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The derivation was first given by:  

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis and L. H. Margaritis (2000). A Mechanism for Action of 

Oscillating Electric Fields on Cells. Biochemical and Biophysical Research Communications 272, 634–640 (2000).  

The following derivation is based on the notation of Wikipedia. We start with the equation of the 

damped and driven harmonic oscillator (https://en.wikipedia.org/wiki/Harmonic_oscillator):  

 

  
  = 

 

 
 is called the 'undamped angular frequency of the oscillator' and  

 = 
 

    
 is called the 'damping ratio'. 

The parameters for Na+- ions in a membrane channel are (see the papers of Panagopoulos et al.):  

m  3.8 ∙ 10-26 kg, k  1.5 ∙ 10-24 kg/s2, c  6.4 ∙ 10-12 kg/s 

Therefore: 

  
  = 

 

 
  39.5 

 

  
 and  

0  6.3 
 

 
 

 = 
 

    
  1.34 ∙ 1013 >> 1 

Because  >> 1, we have an “overdamped system (ζ > 1): The system returns to steady state without 

oscillating. Larger values of the damping ratio ζ return to equilibrium slower” (see Wikipedia). 

 

To keep the connection to Wikipedia, we go to dimensionless variables and set: 

 =  0 · t and q( ) = x(t) 

Equation (2) becomes: 
   

  
 + 2 

  

 
 + q = 

    

  
  

 

We consider the special case of a sinusoidal driving force: 

F(t) = F0 · sin (  t )     or    F( ) = F0 · sin ( 
 

  
 ) = F0 · sin (   )  with   = 

 

  
 

The general solution q is a sum of a transient solution qt that depends on initial conditions, and a 

steady state solution qst that is independent of initial conditions and depends only on the driving 

amplitude F0, driving frequency ω, undamped angular frequency  0, and the damping ratio ζ: 

q( ) = qt( ) + qst( ) 

  

                                                 
1
 Eq. (23) in: D. J. Panagopoulos, O. Johansson, G. L. Carlo (2015). Polarization: A Key Difference between Man-made and 

Natural Electromagnetic Fields, in regard to Biological Activity. Scientific Reports 5, 14914; doi: 10.1038/srep14914 
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1. The transient solution qt( ): 

According to Wikipedia the solution based on solving the ordinary differential equation is for ζ > 1 

and arbitrary constants c1 and c2: 

 

 

 

Due to  >> 1, which implies       , and  not too large (e.g.  < 10-3
 or t < 1 ms, which is 

typical for the length of a pulse in mobile communication), we get the approximated function 

               
   

And with eq. (3), (4) and (7) we have 

xt(t)           
               

  
 

 
  
 

 

2. The steady-state solution qst( ): 

Apply the "complex variables method" by solving the auxiliary equation (15) below for Qst( ) and 

then finding the real part of its solution (qst( ) = Re Qst( )): 

     

  
 + 2 

    

 
 +     = 

  

  
  

 (- i) [cos (   ) + i sin (   )] = - i  
  

  
  

      

Supposing the solution is of the form 

Qst( ) = 
  

  
  

 A             

Inserting this solution into the differential equation gives: 

                                      

Equating the real and imaginary parts results in two independent equations 

                   and                  

Therefore:              
    

   
  

We consider only the case, where   1 or     0. Therefore           or  
 

 
         and 

from equation (18) we get: A < 0. 

Squaring both equations (18) and adding them together gives: 

                        

Therefore 

         
 

              
 

The steady-state solution of eq. (15) is 

Qst( ) =  
  

  
   

 
           

              
     with                  

    

   
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https://en.wikipedia.org/wiki/Complex_analysis
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With (6) and (9) eq. (22) can be written as: 

Qst( ) =  
  

  
     

 
           

  
    

 
     

 =  
  

  
 

           

  
    

 
     

 

Because   10
13 (eq. (6)) and 1      109 (108 Hz … 109 Hz is the frequency-range of the mobile 

communication), we get 

0   
    

   
   10-4    and therefore       0  and     

    

 
        . 

This means: Qst( ) can be approximated with the function 

 Qst( )    
  

  
      

The real part of this solution is: 

qst( ) = Re Qst( )     
  

  
    

And with eq. (7) and (9) we have the approximation 

xst(t)     
  

  
      

 

3. The general solution q( ) = x(t): 

The general solution is the sum of eq. (11) and eq. (22). Because the system is extremely 

overdamped, we can us confine on the approximated sum (eq. (13), (26)). The result is: 

x(t) = xt(t) + xst(t)           
  

 

 
    

  

  
      

 

4. Initial conditions 

We consider the initial conditions  

x(0) = 0    and    
  

  
          

The first condition x(0) = 0 m results in 

         
  

  
 

The second condition results in  

     
 

 
             

    

 
    

  

   
 

Combining eq. (30) and (31) with (27) gives  

x(t)  
  

  
            

  

   
           

   
  

  
                      

For small t (t < 1 ms, which is typical for the length of a pulse in mobile communication) and small 

          
 

 
  for Na+- ions in a closed membrane channel) the term ~    can be ignored and we 

get the equation of Panagopoulos: 

x(t)  
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